Geometric Accuracy Analysis for Discrete Surface Approximation
نویسندگان
چکیده
In geometric modeling and processing, computer graphics, smooth surfaces are approximated by discrete triangular meshes reconstructed from sample points on the surface. A fundamental problem is to design rigorous algorithms to guarantee the geometric approximation accuracy by controlling the sampling density. This theoretic work gives explicit formula to the bounds of Hausdorff distance, normal distance and Riemannian metric distortion between the smooth surface and the discrete mesh in terms of principle curvature and the radii of geodesic circum-circle of the triangles. These formula are applied to design sampling density. Furthermore, we prove the meshes induced from the Delaunay triangulations of the dense samples on a smooth surface are convergent to the smooth surface under both Hausdorff distance and normal fields. The Riemannian metrics and the Laplace-Beltrami operators on the meshes are also convergent. These theoretic results lay down the foundation to guarantee the approximation accuracy of many algorithms in geometric modeling and processing.
منابع مشابه
On surface normal and Gaussian curvature approximations given data sampled from a smooth surface
Approximations to the surface normal and to the Gaussian curvature of a smooth surface are often required when the surface is defined by a set of discrete points. The accuracy of an approximation can be measured using asymptotic analysis. The errors of several approximations to the surface normal and to the Gaussian curvature are compared. 2000 Elsevier Science B.V. All rights reserved.
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملA Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کامل